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SUMMARY

Linear second-order elliptic equations on bounded smooth domains have been studied from

the �rst half of the twentieth century. Works of Giraud and Schauder in the thirties showed

that, assuming su�cient smoothness of the coe�cients and of the boundary of the domain,

the basic boundary-value problems are solvable. The article of Friedrichs in 1934 initiated an

approach in which they were interpreted from the standpoint of functional analysis. The articles

by De Giorgi in 1957 and Nash in 1958 prompted a start of a new stage in the study of many-

dimensional linear equations. The culmination of this stage were works of Stampacchia (1960),

Morrey (1959), and Ladyzhenskaya and Ural'tseva (1964). Their research inspired a number of

other mathematicians.

Problems in which the boundary value condition has the form b(x, u,Du) = 0, where b de-

pends on the gradient Du of the unknown function u in a suitable way, are called oblique

derivative problems. It is worth noting that there was a major di�erence in attitudes towards

oblique and Dirichlet problems in the eyes of most researchers in partial di�erential equations.

Ladyzhenskaya and Ural'tseva in their book devoted nine chapters to the Dirichlet problem

and only one (Chapter 10) to �other boundary problems�. Gilbarg and Trudinger in their book

devoted only several pages to oblique derivative problem. The systematic development of the

theory of oblique derivative problems for elliptic equations was presented in 2013 by Lieberman.

Unfortunately, the theory of oblique derivative problem is not yet in the complete state, like it

is for Dirichlet problem.

It should be noted that investigations in the aforementioned works refer to boundary value

problems in su�ciently smooth domains. However, many problems of physics and technology

lead to the necessity of studying boundary value problems in domains with non-smooth boundary,

in particular, in domains which have a �nite number of angular (n = 2) or conical (n ≥ 3) points

on the boundary. The theory of boundary value problems in non-smooth domains was described

in well-known survey of Kondratiev and Oleinik (1983) and in the work of Kufner and Sändig

(1987), as well as in the monographs of Maz'ya et al. (1984, 1997).

The pioneering and fundamental works devoted to the general linear boundary value problems

for domains with angular or conical pints were the papers of Kondratiev (1963, 1967), Birman
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and Skvortsov (1962), Eskin (1963, 1985), Lopatinskiy (1963), and Maz'ya (1963, 1966, 1967).

These works are related to normal solvability and regularity for general linear elliptic problems

in the weighted Sobolev-Kondratiev spaces in non-smooth domains under su�cient smoothness

of the equations coe�cients. It is worthy of note that the methods used for analysis problems in

smooth domains cannot be applicable to the analysis of problems in non-smooth domains.

This dissertation is devoted to investigation of the behaviour of strong solutions of the oblique

derivative problem for elliptic equations in a neighborhood of a boundary conical point. The

author's main goal is to establish the sharp exponent of the solution decrease rate under the

best possible conditions. The theory of oblique derivative problem has played a major role in

the study of re�ected shocks in transonic �ow. Another important application of this theory is

the capillary problem. The description of this theory, as it was known in 1986, can be found

in a book by Finn (1986). In the science of construction materials, singular points correspond

to the properties of materials near the cracks or �ssures. Some applications of boundary value

problems, both linear and nonlinear, in composite materials with a �nite number of inclusions

are presented in the monograph by Mityushev and Rogosin (1999). In geodesy some of the

most fundamental problems of the gravity �eld determination from boundary observations are

translated into exterior boundary value problems for the Laplace or Poisson equation.

In the dissertation we study the behavior of strong solutions to the oblique derivative prob-

lem for non-divergent: linear, semi-linear and quasi-linear second-order elliptic equations in

an n-dimensional bounded domain with a boundary conical point. We derive a priori esti-

mates in the Sobolev-Kondratiev spaces and estimates of the type u(x) = O(|x|α) with sharp

exponents α.

We also derive the Friedrichs-Wirtinger type inequality adapted to the linear problem with

an sharp estimating constant and establish some auxiliary integro-di�erential inequalities. We

derive for solutions local and global weighted estimates and �nd the best exponents of the

continuity power modulus at the conical boundary point. We consider the solution estimates

for equations with minimal smooth coe�cients that is a principal new feature of the work. We

derive some estimations of solutions in the case, when the equations coe�cients do not satisfy

the Dini-continuity condition.

We prove the theorem that there exists the smallest positive eigenvalue of the eigenvalue

problem for the Laplace-Beltrami operator on the unit sphere. We also derive the estimation of

the eigenvalue.

Obtained results are extension of the works of Borsuk and Kondratiev, and the previous work

of the author (Electronic Journal of Di�erential Equations, 2012). Partial results presented in
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the dissertation were published in three papers: two in Complex Variables and Elliptic Equations

(2014, 2015) and one in Current Trends in Analysis and Its Applications, Trends in Mathematics

(2015).

In this thesis we applied the Borsuk-Kondratiev methods that are adapted to the oblique

derivative problems in non-smooth domains. We also use Sobolev imbedding theorems, Lp-

estimates, maximum principle theorems, comparison principle theorems as well as the method

of the barrier function. In the proof of the existence theorem we use the Legendre spherical har-

monics, Gegenbauer functions, and some properties of these functions. To derive the estimations

of the smallest positive eigenvalue we use the Chaplygin maximum principle.
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